The Urban planning guide supports climate-proof urban planning

Summary

This article is an extended summary of the publication Towards climate-proof urban planning – A guide to mitigate and adapt to climate change in land use planning, zoning and construction. The full version of the Urban planning guide can be read as separate articles here on the Climateguide.fi portal in Finnish.

The guide provides information and tools for urban planning actors

The Towards climate-proof urban planning guide or, in short, the Urban planning guide has been prepared to support climate-proof land use planning, zoning, and construction. Climate proofing refers to the conscious and proactive ability to respond flexibly to changes and disruptions resulting from climate and weather, to recover from them, and to develop activities and preparedness after they have happened.

The Urban planning guide compiles researched data and best practices. It also contains numerous examples of implemented solutions, as well as checklists for urban planning actors and several links to other information sources. The full content of the guide is available as web articles here on Climateguide.fi.

Urban planning can not only reduce greenhouse gas emissions but also prepare for weather and climate risks. This is why both climate change mitigation and adaptation have been selected as the perspectives of the guide. These perspectives are examined side by side, to prevent the adverse cross-effects of different climate measures. The aim is also to promote other areas of sustainability, such as the circular economy, biodiversity and the health and well-being of urban residents.

The Urban planning guide is meant for all actors involved in urban planning, such as planners, designers, developers, as well as municipal and urban decision-makers and residents. The guide is based on multi-criteria and interactive planning, and it has been developed in extensive cooperation with experts in the field and urban residents.

The approach of the guide emphasises that all actors can participate and that different objectives are reconciled in urban planning. The aim of this approach is to help balance climate measures and to support the resolution of possible conflict situations. Successful interaction between different actors produces better plans. Interactive planning is supported by multi-criteria assessment. It is a systematic method that provides tools for the decision-making process to identify and illustrate different objectives and values.

Urban planning is part of weather and climate risk management

With climate change, we must prepare for both slowly evolving changes in average climate conditions, as well as changes in extreme weather phenomena. In Finnish cities, preparations must be made for more frequent floods, heatwaves and, depending on the area, for increased slipperiness and heavy snowfall, as well as the weakening of biodiversity.

In the urban environment, it is possible to prepare for climate change by identifying local and regional climate risks using climate observations and scenarios. The risks consist of local and regional hazards, vulnerability, exposure, and adaptive capacity.

On a city-wide scale, risk assessment must first determine what or whom to protect, and where and from which hazards. Once weather and climate risks have been identified, they can be used to assess the potential impacts of climate change from the perspective of different areas of urban planning.

Based on the risk assessment, proactive adaptation measures can be selected to reduce risks. It is important to maintain weather and climate risk management consistently at different levels of planning. This requires strong cooperation and interaction between, for example, different levels of zoning. [1]

Climate-proof urban planning also promotes carbon-neutral community structure

In urban planning, the sources of greenhouse gas emissions from cities can be indirectly influenced by promoting a carbon-neutral community structure. Planning can be used to increase renewable energy sources and material and energy efficiency, encourage sustainable mobility modes, and maintain carbon sinks and stocks [2]. Emission reductions can be promoted at different zoning levels and at different planning stages. The most significant sources of emissions in the urban environment are construction, energy use, and transport.

Urban planning plays a key role in maintaining carbon sinks and stocks. In an urban environment, carbon sinks can be strengthened by steering the use of areas and the location of construction, which requires information flow at different planning levels. Carbon sinks and ecosystem services can be strengthened by avoiding the introduction of new natural areas for construction use.

New and renovation construction must be targeted at urban areas within the existing community structure, in which case it can support the infrastructure and service provision of already built areas [3]. However, an excessively compact structure should be avoided so that it does not have a negative impact on comfort and overall sustainability, does not intensify the heat island phenomenon or make flood management more difficult.

The size of the carbon stock of a city or municipality is particularly influenced by the number of forests [4]. Carbon sequestration is supported by the vitality of various green areas. Existing carbon stocks can be maintained by managing forests, fields, parks and other green areas and elements so that their ability to sequester carbon remains as efficient as possible [5]. New innovations, such as biochar, can also be utilised in carbon storage. It promotes soil growth conditions and structure, which can support, for example, growing conditions of trees and stormwater management.

Several different methods can be used to assess climate impacts in urban planning. Emission calculations can be used to examine the impacts of zoning and construction on greenhouse gas emission sources, as well as carbon stocks and sinks. In addition to climate emissions, assessments may also include other areas, such as impacts on biodiversity and opportunities for the utilisation of sustainable mobility modes.

Planning can promote low-carbon energy solutions and reduce the carbon footprint of buildings

A compact community structure can promote low-carbon energy solutions in the city. At the zoning level, adaptability is important to continue the development of the energy system in the future in order to enable new energy solutions. In the post-zoning phases, energy solutions can be influenced at a more detailed level.

The carbon footprint of buildings, i.e. greenhouse gas emissions from their life cycle, can be influenced at different levels of planning. The design and positioning of buildings can reduce energy consumption and increase the production conditions for solar energy [6]. The life cycle of a building can also be extended by changing its intended purpose [7].

The carbon footprint is also affected by construction materials. With renovation construction, the carbon footprint of a building is usually smaller than if the building is demolished and replaced with a completely new one [8].

Renewable energy and the use of waste heat can be promoted at different levels of planning. The introduction of geothermal heat, wind power and solar energy requires anticipation and space reservations in zoning.

The utilisation of waste heat can be promoted by identifying its sources. A decentralised, non-combustion energy system reduces district heating emissions but requires demand and production flexibility.

Climate-proof and low-carbon mobility is promoted at different levels of urban planning

Zoning can also promote climate-proof mobility. Climate-proof mobility refers to low-emission modes of transport and practices that have low environmental impacts and are economical, safe, and health-promoting.

Planning solutions affect the location of functions and the formation of mobility and transport needs. These affect the compactness of the community structure and, consequently, transport emissions. [9] Compact land use which mixes various functions creates a foundation for climate-proof mobility and enables short distances [10], [11].

A vivid and pleasant urban space is supported by the planning principle that the most important services and destinations can be reached by walking, cycling or public transport. At the same time, noise and air pollution are prevented, which has a positive impact on the health of residents. [12], [13] Accessibility analyses and traffic forecasts can be used to support planning [6].

Low-carbon modes of mobility can be promoted through comprehensive measures that emphasise accessibility, smooth flow and safety. Walking is promoted by pleasant and smooth trails, and well-functioning cycling routes separate cycling from walking. Climate-proof modes of mobility can also be promoted by restricting and targeting the parking of passenger cars. The use of bicycles is encouraged by high-quality bicycle parking which is located close to services and in public transport hubs.

Circular economy reduces the use of natural resources and greenhouse gas emissions

In urban planning, the circular economy helps avoid the introduction of virgin raw materials and new land [VIE20]. This also reduces greenhouse gas emissions [14].

Zoning should consider the circulation and use of materials. The foundation for the circular economy is often laid in the local master plan and its space reservations. They contribute to ensuring that recycling and intermediate storage of various materials, as well as waste materials and production side streams can be utilised as efficiently as possible. [3]

Circular economy is also promoted through planning cooperation. It is essential to commit different actors in the area, such as companies and residents, to the implementation of circular economy operating models. In addition, the municipality may require compliance with the circular economy principles in zoning regulations and land transfer terms. [15] Municipalities can create preconditions for recycling surplus materials and waste, for example, by steering and developing land use planning solutions [3].

The aim of urban planning that promotes the circular economy is to reduce life-cycle carbon dioxide emissions at different stages of construction [16]. The total emissions of a building are affected by its actual lifespan. Conversion adaptability reduces the need to demolish buildings. The implementation of the circular economy is promoted, for example, by means of land transfer terms [17].

Nature-based solutions offer many benefits

Urban planning can make use of numerous nature-based solutions that mimic natural processes. Nature-based solutions are based on ecosystem services and utilise blue-green structures, in particular. In zoning, the implementation of blue-green structures can be promoted, for example, by means of general street and green area development plans.

Nature-based solutions bring many benefits, and their planning requires multidisciplinary expertise [18]. For example, green areas enable diverse social, cultural and economic ecosystem services. At the same time, they mitigate climate change by sequestrating and storing carbon dioxide, as well as promote adaptation to weather and climate risks. [19]

Nature-based solutions offer alternatives to conventional grey infrastructure in land use planning, zoning and construction. Commitment to nature-based solutions at a strategic level also creates preconditions for investments [20].

The consideration of ecosystem services in urban planning is facilitated by the green factor. The regional green factor is suitable for general planning [21] and the green factors based on blocks and plots for more detailed yard planning. The use of the green factor supports the promotion of nature-based solutions. The use of the green factor may be required in the local detailed plan, and it may also be promoted in the plot transfer terms.

The urban heat island effect can be alleviated, for example, with a sparse urban structure

Urban sprawl and densification intensify the urban heat island effect in cities. The urban heat island effect means that the city centre has a higher temperature than the surrounding areas. The urban heat island consists of waste heat produced by buildings, transport and industry, as well as the release of heat stored in the city’s structures by solar radiation. [22], [23] The phenomenon reinforces the increasing exposure to heat stress caused by climate change and increases the health risks associated with heat.

Vulnerability and exposure to heat must be considered in urban planning. The intensity of the urban heat island effect can be alleviated by a sparser urban structure, i.e. by regulating the ratio between the height of buildings and the width of streets.

It is also essential to consider the topography, sufficient vegetation and location of the area in relation to water bodies. Diverse blue-green infrastructure can effectively cool down and shade the urban environment, as well as increase biodiversity and comfort in cities. Blue-green infrastructure includes urban parks, street trees, green roofs and walls, as well as natural and built water areas and wetlands.

Cooling and reflective building materials and light surface colour can be used to improve the temperature conditions of buildings [24], [25], [26]. This prevents heat storage in buildings [27]. Heat stress can also be reduced with water-permeable surfaces. Combined with vegetation, permeable pavements have a higher heat transfer capacity than traditional asphalt. This capacity helps to reduce the formation of urban heat islands in both humid and dry conditions. [27], [28]

Flood risk management can be promoted in a variety of ways in different aspects of urban planning

The built environment is susceptible to coastal, river and lake and stormwater floods [29]. Climate change will alter the rhythm and seasonal timing of river and lake floods and will also affect the magnitude of floods. As heavy rainfall becomes more common, the risk of urban stormwater floods may increase in built-up areas. [30]

Flood hazard areas and recommendations for minimum building elevations should be considered in land use planning, zoning, and construction [31]. By favouring nature-based solutions, it is possible to promote not only flood damage prevention but also urban biodiversity, water protection, and recreational opportunities [32]. A wide range of flood data is available to support planning.

Flood protection and stormwater solutions can include several objectives of sustainable urban development. Coastal areas may be particularly vulnerable to flood risks and erosion [1]. Therefore, the location of buildings and the durability of building materials must be considered in shoreline construction [33]. Functional flood protection and stormwater structures are safe, accessible, increase the diversity of urban nature, and offer residents opportunities for recreation.

Stormwater management is based on a catchment area-based examination [34]. Nature-based flood protection and stormwater solutions bring diverse benefits.

[35]

  • Tuomenvirta H., Haavisto R., Hildén M., Lanki T., Luhtala S., Meriläinen P., Mäkinen K., Parjanne A., Peltonen-Sainio P., Pilli-Sihvola K., Pöyry J., Sorvali J. & Veijalainen N. 2018. Sää- ja ilmastoriskit Suomessa – Kansallinen arvio. Valtioneuvoston kanslia, Helsinki. Valtioneuvoston selvitys- ja tutkimustoiminnan julkaisusarja 43/2018. 107 s. http://urn.fi/URN:ISBN:978-952-287-601-0
  • Lwasa, S., Seto, K. C, Bai, X., Blanco, H., Gurney, K. R., Kılkış, R., Lucon, O., Murakami, Pan, J., Sharifi, A. & Yamagata, Y. 2022: Urban systems and other settlements. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Shukla, P. R. Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S. & Malley, J. (eds.)]. s. 887. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-8/
  • Berg, A., Räisänen, M. & Salo, H. (toim.) 2020. Kiertotalouden tieto käyttöön. Kahdeksan keskeistä teemaa ja uudet tietotarpeet. Suomen ympäristökeskuksen raportteja 6/2020, Helsinki. 55 s. http://hdl.handle.net/10138/310568
  • Rasinmäki, J. & Känkänen, R. 2014. Kuntien hiilitasekartoitus, osa 1. Helsingin, Lahden, Turun, Vantaan ja Espoon maankäyttösektorin kasvihuonekaasupäästöt, hiilinielut ja hiilivarastot. Helsingin kaupungin ympäristökeskuksen julkaisuja 9/2014. 58 s. (PDF) https://www.hel.fi/static/ymk/julkaisut/julkaisu-09-14.pdf
  • Kehvola, H.-M. 2020. Hiilinielujen ja -varastojen edistäminen kaupungissa sekä yhteydet luonnon monimuotoisuuteen ja ekosysteemipalveluihin. Pro gradu -tutkielma. Helsingin yliopisto, Bio- ja ympäristötieteellinen tiedekunta. 59 s. http://hdl.handle.net/10138/322592
  • Ympäristöministeriö. 2015. Ilmastotavoitteita edistävä kaavoitus – Näkökulmia kuntakaavoitukseen. Ympäristöministeriö, Rakennetun ympäristön osasto, Helsinki. Suomen ympäristö 3:2015. 86 s. http://urn.fi/URN:ISBN:978-952-11-4446-2
  • Saarela, K., Korsimo, I., Alasentie, S., Lahdensivu, J., Tulokas, T., Ruotanen, J., Takala, J., Tiainen, P., Ropponen, A. & Tapaninen, L. 2023. Rakennuksen käyttötarkoituksen muutoksen edellytykset. Case toimistorakennus. Ympäristöministeriön julkaisuja 2023:35, Helsinki. 178 s. http://urn.fi/URN:ISBN:978-952-361-575-5
  • Huuhka, S. Vainio, T., Moisio, M., Lampinen, E., Knuutinen, M., Bashmakov, S., Köliö, A., Lahdensivu, J., Ala-Kotila, P. & Lahdenperä, P. 2021. Purkaa vai korjata? Hiilijalanjälkivaikutukset, elinkaarikustannukset ja ohjauskeinot. Ympäristöministeriön julkaisuja 2021:9, Helsinki. 129 s. http://urn.fi/URN:ISBN:978-952-361-221-1
  • Haapamäki, T., Huisko, S., Korhonen, S., & Väänänen, T. 2022. Maankäytön ja liikenteen yhteisen vaikutusarvioinnin kehittäminen: Esiselvitys. Ympäristöministeriön julkaisuja. 2022:11. 58 s. http://urn.fi/URN:ISBN:978-952-361-254-9
  • Helminen, V., Heikinheimo, V., Tiitu, M., Nyberg, E., Rehunen, A. & Kosonen, L. 2021. Sekoittunut yhdyskuntarakenne ja sen mittarit. Suomen ympäristökeskuksen raportteja 44/2021, Helsinki. 77 s. https://helda.helsinki.fi/handle/10138/336103
  • Helminen, V., Nyberg, E., Tiitu, M., Rehunen, A., Strandell, A., Nurmio, K., Saastamoinen, U. & Laurila, J. 2021. Kestävän yhdyskuntarakenteen jäljillä – näkökulmia ja ratkaisuja kaupunkien ja maaseutujen suunnittelun haasteisiin. Suomen ympäristökeskuksen raportteja 15/2021, Helsinki. 76 s. http://hdl.handle.net/10138/330245
  • Diallo, T., Cantoreggi, N. & Simos, J. 2016. Health Co-benefits of climate change mitigation policies at local level: Case Study Geneva. Environnement, Risques et Santé, Volume 15, Issue 4: 332–340. https://doi.org/10.1684/ers.2016.0890
  • Allam, Z., Nieuwenhuijsen, M., Chabaud, D. & Moreno, C. 2022. The 15-minute city offers a new framework for sustainability, liveability, and health. The Lancet Planetary Health, Volume 6, Issue 3: e181-e183. https://doi.org/10.1016/S2542-5196(22)00014-6
  • Koivulahti, M., Kuosmanen, A., Haavisto, T. & Savolahti, H. 2022. Maarakentamisen kiertotalous säästää arvokkaita luonnonvaroja. CircBrief – Kiertotalouden parhaita käytäntöjä 05/2022. 3 s. (Issuu) https://issuu.com/suomenymparistokeskus/docs/circbrief_a4-4s_fi_taitto_saavutettava_web?fr=sMGE2MDUwNTk3Mjk
  • Vierikko, K. Nieminen, H., Salomaa, V., Häkkinen, J., Salminen, J. & Sorvari, J. 2020. Kiertotalous maankäytön suunnittelussa. Kaavoitus kestävän ja luonnonvaroja säästävän kaupunkiympäristön edistäjänä. Suomen ympäristökeskuksen raportteja 45/2020, Helsinki. 103 s. http://hdl.handle.net/10138/322882
  • Valtioneuvosto. 2021. Uusi suunta. Ehdotus kiertotalouden strategiseksi ohjelmaksi. Valtioneuvoston julkaisuja 2021:1, Helsinki. 113 s. http://urn.fi/URN:ISBN:978-952-383-658-7
  • Pirkanmaan liitto. 23.5 2023 (Päivitetty). Tampere: Tontinluovutuskriteereillä vauhtia kiertotalouteen ja rakentamisen päästövähennyksiin. Kestävyysloikka-palvelu. [Viitattu 22.3.2024] https://kestavyysloikka.ymparisto.fi/tampere-tontinluovutuskriteereilla-vauhtia-kiertotalouteen-ja-rakentamisen-paastovahennyksiin/
  • Santiago Fink, H. 2016. Human-nature for climate action: Nature-based solutions for urban sustainability. Sustainability, Volume 8, Issue 4, 254. https://doi.org/10.3390/su8030254
  • Eggermont, H., Balian, E., Azevedo, J. M. N., Beumer, V., Brodin, T., Claudet, J., Fady, B., Grube, M., Keune, H., Lamarque, P., Reuter, K., Smith, M., van Ham, C., Weisser, W. W. & Le Roux, X. 2015. Nature-based solutions: new Influence for environmental management and research in Europe. GAIA – Ecological Perspectives for Science and Society, Volume 24, Issue 4: 243–248. https://doi.org/10.14512/gaia.24.4.9
  • Paloniemi R., Vikström, S., Rekola, A., Mäkinen, K., Marttunen, M., Hjerppe, T., Sane, M., Syrjänen, K., Koskela, I.-M., Aulake, M., Hautamäki, R., Ariluoma, M., Kehvola, H.-M., Matila, A., Häyrynen, M., Hankonen, I., Tuomenvirta,H., Pilli-Sihvola, K., Votsis, A. & Haavisto, R. 2019. Kestävää kaupunkisuunnittelua: luontopohjaiset ratkaisut maakunnissa ja kunnissa. Valtioneuvoston kanslia, Helsinki. Valtioneuvoston selvitys- ja tutkimustoiminnan julkaisusarja 2019:48. 70 s. http://urn.fi/URN:ISBN:978-952-287-774-1
  • C/O City -hanke. 2020. Alueellinen viherkerroin 2.0. 62s. (PDF) [Viitattu 22.3.2024] https://fvh.io/6qryn
  • Hulley, M. E. 2012. The urban heat island effect: causes and potential solutions. In F. Zeman (Ed.). 2012. Metropolitan Sustainability. Woodhead Publishing: 79–98. https://doi.org/10.1533/9780857096463.1.79
  • Oke, T. 1987. Boundary Layer Climates. 2nd edition. Routledge, London. [Viitattu 22.3.2024]
  • Bhargava, A., Lakmini, S. & Bhargava, S. 2017. Urban heat island effect: it’s relevance in urban planning. Journal of Biodiversity: Endangered Species, Volume 5, Issue 2, 1000187. 4 p. (PDF) https://doi.org/10.4172/2332-2543.1000187
  • Elliott, H. Eon, C. &, Breadsell, J. K. 2020. Improving city vitality through urban heat. Reduction with green infrastructure and design solutions: a systematic literature review. Buildings, Volume 10, Issue 12, 219. https://doi.org/10.3390/buildings10120219
  • Rinne, S., Auvinen, K., Reda, F., Ruggiero, S. & Temmes, A. 2019. Clean district heating -how can it work? Aalto University, Department of Management Studies. Aalto University publication series BUSINESS + ECONOMY, 3/2019. 31 p. http://urn.fi/URN:ISBN:978-952-60-8722-1
  • Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A. L., Rossi, F., Santamouris, M., Synnefa, A., Wong, N. H. & Zinzi, M. 2016. Local climate change and urban heat island mitigation techniques – the state of the art. Journal of Civil Engineering and Management, Volume 22, Number 1: 1–16. https://doi.org/10.3846/13923730.2015.1111934
  • Chen, J. Chu, R., Wang, H., Zhang, L., Chen, X. & Du, Y. 2019. Alleviating urban heat island effect using high-conductivity permeable concrete pavement. Journal of Cleaner Production, Volume 237, 117722. https://doi.org/10.1016/j.jclepro.2019.117722
  • Suomen ympäristökeskus. 4.6.2021. Tulvariskialueet. Vesi.fi-sivusto. [Viitattu 22.3.2024] https://www.vesi.fi/vesitieto/tulvariskialueet/
  • Pilli-Sihvola, K., Halonen, J., Meriläinen, P., Laapas, M., Ruuhela, R., Munck af Rosenschöld, J., Hällfors, M., Knuuti, S. &, Sorvali, J. 2023. Ilmastonmuutokseen liittyvät riskit ja haavoittuvuudet Suomessa: Tarkastelu kansallisen ilmastonmuutoksen sopeutumissuunnitelman 2030 taustaksi. Valtioneuvoston julkaisuja 2023:72, Helsinki. 140 s. http://urn.fi/URN:ISBN:978-952-383-566-5
  • Parjanne, A. & Huokuna, M. (toim.) 2014. Tulviin varautuminen rakentamisessa – opas alimpien rakentamiskorkeuksien määrittämiseksi ranta-alueilla. Suomen ympäristökeskus, Helsinki. Ympäristöopas | 2014. 75 s. http://hdl.handle.net/10138/135189
  • Inkiläinen, E. 2017. Luonnonmukaisen hulevesien hallinnan sovittaminen olemassa olevaan kaupunkiympäristöön: Selvitys suunnittelun vaiheista ja haasteista esimerkkikohteina Latokartanonkaari ja Agnes Sjöbergin katu Helsingin Viikissä. Kandidaatintyö. Aalto-yliopisto, Taiteiden ja suunnittelun korkeakoulu, Maisema-arkkitehtuurin koulutusohjelma. 30 s. https://urn.fi/URN:NBN:fi:aalto-201707046148
  • Yrjölä, T. & Viinanen, J. 2012. Keinoja ilmastonmuutokseen sopeutumiseksi Helsingin kaupungissa. Helsingin kaupungin ympäristökeskuksen julkaisuja 2/2012. 59 s. (PDF) https://www.hel.fi/static/ymk/julkaisut/julkaisu-02-12.pdf
  • Suomen Kuntaliitto 2012. Hulevesiopas. Suomen Kuntaliitto, Helsinki. 297 s. https://www.kuntaliitto.fi/julkaisut/2012/1481-hulevesiopas
  • Tikkakoski, P., Leppänen, S., Mela, H., Luhtala, S., Hildén, M., Mikkola, M., Kühn, T., Naumanen, H., Ahonen, S., Haapala, A., Lilja, S., Tuomenvirta, H., Drebs, A. & Votsis, A. 2024. Kohti ilmastokestävää kaupunkisuunnittelua: Opas ilmastonmuutoksen hillinnän ja sopeutumisen edistämiseen alueidenkäytön suunnittelussa, kaavoituksessa ja rakentamisessa. Suomen ympäristökeskuksen raportteja, 18/2024, Helsinki. 204 s. http://hdl.handle.net/10138/576343

Publishers

  • The content is produced as part of the LIFE17 IPC/FI/000002 LIFE-IP CANEMURE project co-funded by the LIFE programme of the European Union.